A category-theoretic characterization of almost measurable cardinals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114306" target="_blank" >RIV/00216224:14310/20:00114306 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26210/20:PU136839
Result on the web
<a href="https://doi.org/10.1090/proc/15076" target="_blank" >https://doi.org/10.1090/proc/15076</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/15076" target="_blank" >10.1090/proc/15076</a>
Alternative languages
Result language
angličtina
Original language name
A category-theoretic characterization of almost measurable cardinals
Original language description
Through careful analysis of an argument of [Proc. Amer. Math. Soc. 145 (2017), pp. 1317-1327], we show that the powerful image of any accessible functor is closed under colimits of kappa-chains, kappa a sufficiently large almost measurable cardinal. This condition on powerful images, by methods resembling those of [J. Symb. Log. 81 (2016), pp. 151-165], implies kappa-locality of Galois-types. As this, in turn, implies sufficient measurability of kappa, via [Proc. Amer. Math. Soc. 145 (2017), pp. 4517-4532], we obtain an equivalence: a purely category-theoretic characterization of almost measurable cardinals.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
1088-6826
Volume of the periodical
148
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
4065-4077
UT code for WoS article
000550683900036
EID of the result in the Scopus database
2-s2.0-85090521889