Tameness, powerful images, and large cardinals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU136847" target="_blank" >RIV/00216305:26210/21:PU136847 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/21:00121092
Result on the web
<a href="https://www.worldscientific.com/doi/10.1142/S0219061320500245" target="_blank" >https://www.worldscientific.com/doi/10.1142/S0219061320500245</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219061320500245" target="_blank" >10.1142/S0219061320500245</a>
Alternative languages
Result language
angličtina
Original language name
Tameness, powerful images, and large cardinals
Original language description
We provide comprehensive, level-by-level characterizations of large cardinals, in the range from weakly compact to strongly compact, by closure properties of powerful images of accessible functors. In the process, we show that these properties are also equivalent to various forms of tameness for abstract elementary classes. This systematizes and extends results of [W. Boney and S. Unger, Large cardinal axioms from tameness in AECs, Proc. Amer. Math. Soc. 145(10) (2017) 4517-4532; A. Brooke-Taylor and J. Rosicky, Accessible images revisited, Proc. AMS 145(3) (2016) 1317-1327; M. Lieberman, A category-theoretic characterization of almost measurable cardinals (Submitted, 2018), http://arxiv.org/abs/1809.06963; M. Lieberman and J. Rosicky, Classification theory for accessible categories. J. Symbolic Logic 81(1) (2016) 1647-1648].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
J MATH LOG
ISSN
0219-0613
e-ISSN
1793-6691
Volume of the periodical
21
Issue of the periodical within the volume
1
Country of publishing house
SG - SINGAPORE
Number of pages
18
Pages from-to
1-18
UT code for WoS article
000606523100003
EID of the result in the Scopus database
2-s2.0-85087023895