All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the existence of local quaternionic contact geometries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114335" target="_blank" >RIV/00216224:14310/20:00114335 - isvavai.cz</a>

  • Result on the web

    <a href="http://nyjm.albany.edu/j/2020/26-45v.pdf" target="_blank" >http://nyjm.albany.edu/j/2020/26-45v.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the existence of local quaternionic contact geometries

  • Original language description

    We exploit the Cartan-K¨ahler theory to prove the local existence of real analytic quaternionic contact structures for any prescribed values of the respective curvature functions and their covariant derivatives at a given point on a manifold. We show that, in a certain sense, the different real analytic quaternionic contact geometries in 4n + 3 dimensions depend, modulo diffeomorphisms, on 2n + 2 real analytic functions of 2n + 3 variables.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    New York Journal of Mathematics

  • ISSN

    1076-9803

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    2020

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    37

  • Pages from-to

    1093-1129

  • UT code for WoS article

    000575178200001

  • EID of the result in the Scopus database

    2-s2.0-85097828570