On the existence of local quaternionic contact geometries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114335" target="_blank" >RIV/00216224:14310/20:00114335 - isvavai.cz</a>
Result on the web
<a href="http://nyjm.albany.edu/j/2020/26-45v.pdf" target="_blank" >http://nyjm.albany.edu/j/2020/26-45v.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the existence of local quaternionic contact geometries
Original language description
We exploit the Cartan-K¨ahler theory to prove the local existence of real analytic quaternionic contact structures for any prescribed values of the respective curvature functions and their covariant derivatives at a given point on a manifold. We show that, in a certain sense, the different real analytic quaternionic contact geometries in 4n + 3 dimensions depend, modulo diffeomorphisms, on 2n + 2 real analytic functions of 2n + 3 variables.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
New York Journal of Mathematics
ISSN
1076-9803
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
2020
Country of publishing house
US - UNITED STATES
Number of pages
37
Pages from-to
1093-1129
UT code for WoS article
000575178200001
EID of the result in the Scopus database
2-s2.0-85097828570