All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Differential geometry of SO*(2n)-type structures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019715" target="_blank" >RIV/62690094:18470/22:50019715 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/22:00127021

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s10231-022-01212-y" target="_blank" >https://link.springer.com/article/10.1007/s10231-022-01212-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10231-022-01212-y" target="_blank" >10.1007/s10231-022-01212-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Differential geometry of SO*(2n)-type structures

  • Original language description

    We study 4n-dimensional smooth manifolds admitting a SO*(2n)- or a SO*(2n) Sp (1)-structure, where SO*(2n) is the quaternionic real form of SO(2n, C). We show that such G-structures, called almost hypercomplex/quaternionic skew-Hermitian structures, form the symplectic analogue of the better known almost hypercomplex/quaternionic-Hermitian structures (hH/qH for short). We present several equivalent definitions of SO*(2n)-and SO*(2n) Sp (1)-structures in terms of almost symplectic forms compatible with an almost hypercomplex/quaternionic structure, a quaternionic skew-Hermitian form, or a symmetric 4-tensor, the latter establishing the counterpart of the fundamental 4-form in almost hH/qH geometries. The intrinsic torsion of such structures is presented in terms of Salamon&apos;s EH-formalism, and the algebraic types of the corresponding geometries are classified. We construct explicit adapted connections to our G-structures and specify certain normalization conditions, under which these connections become minimal Finally, we present the classification of symmetric spaces KIL with K semisimple admitting an invariant torsion-free SO*(2n) Sp (1)-structure. This paper is the first in a series aiming at the description of the differential geometry of SO*(2n)- and SO*(2n) Sp (1)-structures.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ19-14466Y" target="_blank" >GJ19-14466Y: Special metrics in supergravity and new G-structures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annali di Matematica Pura ed Applicata

  • ISSN

    0373-3114

  • e-ISSN

    1618-1891

  • Volume of the periodical

    201

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    60

  • Pages from-to

    2603-2662

  • UT code for WoS article

    000855992300001

  • EID of the result in the Scopus database

    2-s2.0-85138554325