All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Cauchy Integral Formula in Hermitian, Quaternionic and osp(4|2) Clifford Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423036" target="_blank" >RIV/00216208:11320/20:10423036 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6zYxXcsT05" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6zYxXcsT05</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s40315-020-00322-z" target="_blank" >10.1007/s40315-020-00322-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Cauchy Integral Formula in Hermitian, Quaternionic and osp(4|2) Clifford Analysis

  • Original language description

    As is the case for the theory of holomorphic functions in the complex plane, the Cauchy Integral Formula has proven to be a cornerstone of Clifford analysis, the monogenic function theory in higher dimensional euclidean space. In recent years, several new branches of Clifford analysis have emerged. Similarly as to how hermitian Clifford analysis in euclidean space R^2n of even dimension emerged as a refinement of euclidean Clifford analysis by introducing a complex structure on R^2n, quaternionic Clifford analysis arose as a further refinement by introducing a so-called hypercomplex structure Q, i.e. three complex structures (I, J, K) which follow the quaternionic multiplication rules, on R^4p, the dimension now being a fourfold. Two, respectively four, differential operators lead to first order systems invariant under the action of the respective symmetry groups U(n) and Sp(p). Their simultaneous null solutions are called hermitianmonogenic and quaternionicmonogenic functions respectively. In this contribution we further elaborate on the Cauchy Integral Formula for hermitian and quaternionic monogenic functions. Moreover we establish Caychy integral formulae for osp(4|2)-monogenic functions, the newest branch of Clifford analysis refining quaternionic monogenicity by taking the underlying symplectic symmetry fully into account.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA20-11473S" target="_blank" >GA20-11473S: Symmetry and invariance in analysis, geometric modelling and control theory</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computational Methods and Function Theory

  • ISSN

    1617-9447

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    3-4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    34

  • Pages from-to

    431-464

  • UT code for WoS article

    000542081500001

  • EID of the result in the Scopus database

    2-s2.0-85086777972