Cauchy's Formula in Clifford Analysis: An Overview
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404237" target="_blank" >RIV/00216208:11320/19:10404237 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-23854-4_1" target="_blank" >http://dx.doi.org/10.1007/978-3-030-23854-4_1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-23854-4_1" target="_blank" >10.1007/978-3-030-23854-4_1</a>
Alternative languages
Result language
angličtina
Original language name
Cauchy's Formula in Clifford Analysis: An Overview
Original language description
As is the case for the theory of holomorphic functions in the complex plane, the Cauchy Integral Formula has proven to be a corner stone of Clifford analysis, the monogenic function theory in higher dimensional euclidean space. In recent years, several new branches of Clifford analysis have emerged, namely, Hermitian and Quaternionic Clifford analysis as refinements of euclidean Clifford analysis. In this contribution, we give an overview on the Cauchy Integral Formulae in these new branches of Clifford analysis.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-01171S" target="_blank" >GA17-01171S: Invariant differential operators and their applications in geometric modelling and control theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Topics in Clifford Analysis
ISBN
978-3-030-23853-7
Number of pages of the result
21
Pages from-to
3-23
Number of pages of the book
524
Publisher name
Birkhäuser, Cham
Place of publication
Cham
UT code for WoS chapter
—