Fundaments of quaternionic Clifford analysis II: splitting of equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369325" target="_blank" >RIV/00216208:11320/17:10369325 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/17476933.2016.1234463" target="_blank" >http://dx.doi.org/10.1080/17476933.2016.1234463</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/17476933.2016.1234463" target="_blank" >10.1080/17476933.2016.1234463</a>
Alternative languages
Result language
angličtina
Original language name
Fundaments of quaternionic Clifford analysis II: splitting of equations
Original language description
Quaternionic Clifford analysis is a recent new branch of Clifford analysis, a higher dimensional function theory which refines harmonic analysis and generalizes to higher dimension the theory of holomorphic functions in the complex plane. So-called quaternionic monogenic functions satisfy a system of first-order linear differential equations expressed in terms of four interrelated Dirac operators. The conceptual significance of quaternionic Clifford analysis is unraveled by showing that quaternionic monogenicity can be characterized by means of generalized gradients in the sense of Stein and Weiss. At the same time, connections between quaternionic monogenic functions and other branches of Clifford analysis, viz Hermitian monogenic and standard or Euclidean monogenic functions are established as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Complex Variables and Elliptic Equations
ISSN
1747-6933
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
26
Pages from-to
616-641
UT code for WoS article
000395203300003
EID of the result in the Scopus database
—