Differential geometry of SO*(2n)-type structures-integrability
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019286" target="_blank" >RIV/62690094:18470/22:50019286 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/22:00129117
Result on the web
<a href="https://link.springer.com/article/10.1007/s13324-022-00701-w" target="_blank" >https://link.springer.com/article/10.1007/s13324-022-00701-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13324-022-00701-w" target="_blank" >10.1007/s13324-022-00701-w</a>
Alternative languages
Result language
angličtina
Original language name
Differential geometry of SO*(2n)-type structures-integrability
Original language description
We study almost hypercomplex skew-Hermitian structures and almost quaternionic skew-Hermitian structures, as the geometric structures underlying SO*(2n)- and SO*(2n)Sp(1)-structures, respectively. The corresponding intrinsic torsions were computed in the previous article in this series, and the algebraic types of the geometries were derived, together with the minimal adapted connections (with respect to certain normalizations conditions). Here we use these results to present the related first-order integrability conditions in terms of the algebraic types and other constructions. In particular, we use distinguished connections to provide a more geometric interpretation of the presented integrability conditions and highlight some features of certain classes. The second main contribution of this note is the illustration of several specific types of such geometries via a variety of examples. We use the bundle of Weyl structures and describe examples of SO*(2n)Sp(1)-structures in terms of functorial constructions in the context of parabolic geometries.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Analysis and Mathematical Physics
ISSN
1664-2368
e-ISSN
1664-235X
Volume of the periodical
12
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
52
Pages from-to
"Article Number: 93"
UT code for WoS article
000817297300001
EID of the result in the Scopus database
2-s2.0-85132967111