All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Selective Plasma Etching of Polymer-Metal Mesh Foil in Large-Area Hydrogen Atmospheric Pressure Plasma

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114855" target="_blank" >RIV/00216224:14310/20:00114855 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/app10207356" target="_blank" >https://doi.org/10.3390/app10207356</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app10207356" target="_blank" >10.3390/app10207356</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Selective Plasma Etching of Polymer-Metal Mesh Foil in Large-Area Hydrogen Atmospheric Pressure Plasma

  • Original language description

    We present a novel method of surface processing of complex polymer-metal composite substrates. Atmospheric-pressure plasma etching in pure H-2, N-2, H-2/N-2 and air plasmas was used to fabricate flexible transparent composite poly(methyl methacrylate) (PMMA)-based polymer film/Ag-coated Cu metal wire mesh substrates with conductive connection sites by the selective removal of the thin (similar to 10-100 nm) surface PMMA layer. To mimic large-area roll-to-roll processing, we used an advanced alumina-based concavely curved electrode generating a thin and high-power density cold plasma layer by the diffuse coplanar surface barrier discharge. A short 1 s exposure to pure hydrogen plasma, led to successful highly-selective etching of the surface PMMA film without any destruction of the Ag-coated Cu metal wires embedded in the PMMA polymer. On the other hand, the use of ambient air, pure nitrogen and H-2/N-2 plasmas resulted in undesired degradation both of the polymer and the metal wires surfaces. Since it was found that the etching efficiency strongly depends on the process parameters, such as treatment time and the distance from the electrode surface, we studied the effect and performance of these parameters.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Sciences

  • ISSN

    2076-3417

  • e-ISSN

    2076-3417

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    20

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000582866300001

  • EID of the result in the Scopus database

    2-s2.0-85099205223