All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of climate and moss vegetation on ground surface temperature and the active layer among different biogeographical regions in Antarctica

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00115672" target="_blank" >RIV/00216224:14310/20:00115672 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0341816220301120" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0341816220301120</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.catena.2020.104562" target="_blank" >10.1016/j.catena.2020.104562</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of climate and moss vegetation on ground surface temperature and the active layer among different biogeographical regions in Antarctica

  • Original language description

    Ground surface temperature (GST) and active layer thickness (ALT) are key indicators of climate change (CC) in permafrost regions, with their relationships with climate and vegetation being crucial for the understanding of future climate change scenarios, as well as of CC feedbacks on the carbon cycle and water balance. Antarctic ice free-areas host simplified ecosystems with vegetation dominated by mosses and lichens, and an almost negligible anthropogenic impact, providing a good template of ecosystem responses to CC. At three different Antarctic Conservation Biogeographical Regions (ACBR) sites in Antarctica located between 74° and 60°S, we compared barren ground and moss vegetated sites to understand and quantify the effects of climate (air temperature and incoming radiation) and of vegetation on GST and ALT. Our data show that incoming radiation is the most important driver of summer GST at the southernmost site, while in the other sites air temperature is the main driver of GST. Our data indicate that there is a decoupling between ALT and summer GST, because the highest GST values correspond with the thinnest ALT. Moreover, our data confirm the importance of the buffering effect of moss vegetation on GST in Antarctica. The intensity of the effect of moss cover on GST and ALT mainly depends on the species-specific moss water retention capacity and on their structure. These results highlight that the correct assessment of the moss type and of its water retention can be of great importance in the accurate modelling of ALT variation and its feedback on CC.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10508 - Physical geography

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Catena

  • ISSN

    0341-8162

  • e-ISSN

    1872-6887

  • Volume of the periodical

    190

  • Issue of the periodical within the volume

    JUL 2020

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000525324600041

  • EID of the result in the Scopus database

    2-s2.0-85082123426