All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On morphisms of crossed polymodules

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00116313" target="_blank" >RIV/00216224:14310/20:00116313 - isvavai.cz</a>

  • Result on the web

    <a href="http://jlta.iauctb.ac.ir/article_671992_325cf0edd723cc8717a116a56fd00d34.pdf" target="_blank" >http://jlta.iauctb.ac.ir/article_671992_325cf0edd723cc8717a116a56fd00d34.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On morphisms of crossed polymodules

  • Original language description

    In this paper, we prove that the category of crossed polymodules (i.e. crossed modules of polygroups) and their morphisms is finitely complete. We, therefore, generalize the group theoretical case of this completeness property of crossed modules.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Linear and Topological Algebra

  • ISSN

    2252-0201

  • e-ISSN

    2345-5934

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    IR - IRAN, ISLAMIC REPUBLIC OF

  • Number of pages

    9

  • Pages from-to

    95-103

  • UT code for WoS article

  • EID of the result in the Scopus database