Graphical calculus of Hopf crossed modules
Result description
We give the graphical notion of crossed modules of Hopf algebras-will be called Hopf crossed modules for short- in a symmetric monoidal category. We use the web proof assistant Globular to visualize our (colored) string diagrams. As an application, we introduce the homotopy of Hopf crossed module maps via Globular, and give some of its functorial relations.
Keywords
GlobularHopf crossed modulesymmetric monoidal categoryhomotopy
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Graphical calculus of Hopf crossed modules
Original language description
We give the graphical notion of crossed modules of Hopf algebras-will be called Hopf crossed modules for short- in a symmetric monoidal category. We use the web proof assistant Globular to visualize our (colored) string diagrams. As an application, we introduce the homotopy of Hopf crossed module maps via Globular, and give some of its functorial relations.
Czech name
—
Czech description
—
Classification
Type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Hacettepe journal of mathematics and statistics
ISSN
2651-477X
e-ISSN
2651-477X
Volume of the periodical
49
Issue of the periodical within the volume
2
Country of publishing house
TR - TURKEY
Number of pages
13
Pages from-to
695-707
UT code for WoS article
000538159500018
EID of the result in the Scopus database
2-s2.0-85085313485
Basic information
Result type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
OECD FORD
Pure mathematics
Year of implementation
2020