All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

From simplicial homotopy to crossed module homotopy in modified categories of interest

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00117625" target="_blank" >RIV/00216224:14310/20:00117625 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1515/gmj-2018-0069" target="_blank" >https://doi.org/10.1515/gmj-2018-0069</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/gmj-2018-0069" target="_blank" >10.1515/gmj-2018-0069</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    From simplicial homotopy to crossed module homotopy in modified categories of interest

  • Original language description

    We address the (pointed) homotopy of crossed module morphisms in modified categories of interest that unify the notions of groups and various algebraic structures. We prove that the homotopy relation gives rise to an equivalence relation as well as to a groupoid structure with no restriction on either domain or co-domain of the corresponding crossed module morphisms. Furthermore, we also consider particular cases such as crossed modules in the categories of associative algebras, Leibniz algebras, Lie algebras and dialgebras of the unified homotopy definition. Finally, as one of the major objectives of this paper, we prove that the functor from simplicial objects to crossed modules in modified categories of interest preserves the homotopy as well as the homotopy equivalence.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Georgian Mathematical Journal

  • ISSN

    1072-947X

  • e-ISSN

    1572-9176

  • Volume of the periodical

    27

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

    541-556

  • UT code for WoS article

    000586530400005

  • EID of the result in the Scopus database

    2-s2.0-85057025469