All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Homotopy algebras are homotopy algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F04%3A00106798" target="_blank" >RIV/67985840:_____/04:00106798 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Homotopy algebras are homotopy algebras

  • Original language description

    We prove that strongly homotopy algebras (such as A.INFIN., C.INFIN., sh Lie, G.INFIN., ...) are homotopy invariant concepts in the category of chain complexes. An important consequence is a rigorous proof that 'strongly homotopy structures transfer overchain homotopy equivalences'.

  • Czech name

    Algebraické homotopy jsou algebraické homotopy

  • Czech description

    Dokážeme, že silně homotopické algebry jsou homotopicky invariantní v kategorii komplexů.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/IAA1019804" target="_blank" >IAA1019804: Higher homotopy structures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2004

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Forum Mathematicum

  • ISSN

    0933-7741

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    32

  • Pages from-to

    129-160

  • UT code for WoS article

  • EID of the result in the Scopus database