C-projective geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00124889" target="_blank" >RIV/00216224:14310/20:00124889 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/20:00117880
Result on the web
<a href="https://doi.org/10.1090/memo/1299" target="_blank" >https://doi.org/10.1090/memo/1299</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/memo/1299" target="_blank" >10.1090/memo/1299</a>
Alternative languages
Result language
angličtina
Original language name
C-projective geometry
Original language description
We develop in detail the theory of (almost) c-projective geometry, a natural analogue of projective differential geometry adapted to (almost) complex manifolds. We realise it as a type of parabolic geometry and describe the associated Cartan or tractor connection. A Kähler manifold gives rise to a c-projective structure and this is one of the primary motivations for its study. The existence of two or more Kähler metrics underlying a given c-projective structure has many ramifications, which we explore in depth. As a consequence of this analysis, we prove the Yano–Obata Conjecture for complete Kähler manifolds: if such a manifold admits a one parameter group of c-projective transformations that are not affine, then it is complex projective space, equipped with a multiple of the Fubini–Study metric.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Memoirs of the American Mathematical Society
ISSN
0065-9266
e-ISSN
1947-6221
Volume of the periodical
267
Issue of the periodical within the volume
1299
Country of publishing house
US - UNITED STATES
Number of pages
150
Pages from-to
1-150
UT code for WoS article
000947278600001
EID of the result in the Scopus database
2-s2.0-85099972719