All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparative index and Lidskii angles for symplectic matrices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00118938" target="_blank" >RIV/00216224:14310/21:00118938 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0024379521001695#" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0024379521001695#</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.laa.2021.04.012" target="_blank" >10.1016/j.laa.2021.04.012</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparative index and Lidskii angles for symplectic matrices

  • Original language description

    In this paper we establish a connection between two important concepts from the matrix analysis, which have fundamental applications in the oscillation theory of differential equations. These are the traditional Lidskii angles for symplectic matrices and the recently introduced comparative index for a pair of Lagrangian planes. We show that the comparative index can be calculated by a specific argument function of symplectic orthogonal matrices, which are constructed from the Lagrangian planes. The proof is based on a topological property of the symplectic group and on the Sturmian separation theorem for completely controllable linear Hamiltonian systems. We apply the main result in order to present elegant proofs of certain important properties of the comparative index.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-01246S" target="_blank" >GA19-01246S: New oscillation theory for linear Hamiltonian and symplectic systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Linear Algebra and its Applications

  • ISSN

    0024-3795

  • e-ISSN

  • Volume of the periodical

    624

  • Issue of the periodical within the volume

    September

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

    174-197

  • UT code for WoS article

    000648525400010

  • EID of the result in the Scopus database

    2-s2.0-85104377969