Comparative index and Hörmander index in finite dimension and their connections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134087" target="_blank" >RIV/00216224:14310/23:00134087 - isvavai.cz</a>
Result on the web
<a href="https://www.pmf.ni.ac.rs/filomat-content/2023/37-16/37-16-6-19561.pdf" target="_blank" >https://www.pmf.ni.ac.rs/filomat-content/2023/37-16/37-16-6-19561.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL2316243E" target="_blank" >10.2298/FIL2316243E</a>
Alternative languages
Result language
angličtina
Original language name
Comparative index and Hörmander index in finite dimension and their connections
Original language description
In this paper we prove new relations between the comparative index and the Hörmander index (and the Maslov index) in the finite dimensional case. As a main result we derive an algebraic formula for calculating the Hörmander index of four given Lagrangian planes as a difference of two comparative indices involving certain transformed Lagrangian planes, or as a combination of four comparative indices. This result is based on a generalization of the comparison theorem for the Maslov index involving three Lagrangian paths. In this way we contribute to the recent efforts in the literature (by Zhou, Wu, Zhu in 2018 and by Howard in 2021) devoted to an efficient calculation of the Hörmander index in this finite dimensional case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-01246S" target="_blank" >GA19-01246S: New oscillation theory for linear Hamiltonian and symplectic systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Filomat
ISSN
0354-5180
e-ISSN
2406-0933
Volume of the periodical
37
Issue of the periodical within the volume
16
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
15
Pages from-to
5243-5257
UT code for WoS article
000950895600001
EID of the result in the Scopus database
2-s2.0-85150854552