Lagrangian submanifolds in strict nearly Kähler 6-manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00506686" target="_blank" >RIV/67985840:_____/19:00506686 - isvavai.cz</a>
Result on the web
<a href="https://projecteuclid.org/euclid.ojm/1563242426" target="_blank" >https://projecteuclid.org/euclid.ojm/1563242426</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Lagrangian submanifolds in strict nearly Kähler 6-manifolds
Original language description
Lagrangian submanifolds in strict nearly Kähler 6-manifolds are related to special Lagrangian submanifolds in Calabi-Yau 6-manifolds and coassociative cones in G2-manifolds. We prove that the mean curvature of a Lagrangian submanifold L in a nearly Kähler manifold (M,J,g) is symplectically dual to the Maslov 1-form on L. Using relative calibrations, we derive a formula for the second variation of the volume of a Lagrangian submanifold L3 in a strict nearly Kähler manifold (M6,J,g) and compare it with McLean's formula for special Lagrangian submanifolds. We describe a finite dimensional local model of the moduli space of compact Lagrangian submanifolds in a strict nearly Kähler 6-manifold. We show that there is a real analytic atlas on (M6,J,g) in which the strict nearly Kähler structure (J,g) is real analytic. Furthermore, w.r.t. an analytic strict nearly Kähler structure the moduli space of Lagrangian submanifolds of M6 is a real analytic variety, whence infinitesimal Lagrangian deformations are smoothly obstructed if and only if they are formally obstructed. As an application, we relate our results to the description of Lagrangian submanifolds in the sphere S6 with the standard nearly Kähler structure described in [34].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Osaka Journal of Mathematics
ISSN
0030-6126
e-ISSN
—
Volume of the periodical
56
Issue of the periodical within the volume
3
Country of publishing house
JP - JAPAN
Number of pages
29
Pages from-to
601-629
UT code for WoS article
000475677200009
EID of the result in the Scopus database
2-s2.0-85070079261