All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lagrangian submanifolds in strict nearly Kähler 6-manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00506686" target="_blank" >RIV/67985840:_____/19:00506686 - isvavai.cz</a>

  • Result on the web

    <a href="https://projecteuclid.org/euclid.ojm/1563242426" target="_blank" >https://projecteuclid.org/euclid.ojm/1563242426</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lagrangian submanifolds in strict nearly Kähler 6-manifolds

  • Original language description

    Lagrangian submanifolds in strict nearly Kähler 6-manifolds are related to special Lagrangian submanifolds in Calabi-Yau 6-manifolds and coassociative cones in G2-manifolds. We prove that the mean curvature of a Lagrangian submanifold L in a nearly Kähler manifold (M,J,g) is symplectically dual to the Maslov 1-form on L. Using relative calibrations, we derive a formula for the second variation of the volume of a Lagrangian submanifold L3 in a strict nearly Kähler manifold (M6,J,g) and compare it with McLean's formula for special Lagrangian submanifolds. We describe a finite dimensional local model of the moduli space of compact Lagrangian submanifolds in a strict nearly Kähler 6-manifold. We show that there is a real analytic atlas on (M6,J,g) in which the strict nearly Kähler structure (J,g) is real analytic. Furthermore, w.r.t. an analytic strict nearly Kähler structure the moduli space of Lagrangian submanifolds of M6 is a real analytic variety, whence infinitesimal Lagrangian deformations are smoothly obstructed if and only if they are formally obstructed. As an application, we relate our results to the description of Lagrangian submanifolds in the sphere S6 with the standard nearly Kähler structure described in [34].

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Osaka Journal of Mathematics

  • ISSN

    0030-6126

  • e-ISSN

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    JP - JAPAN

  • Number of pages

    29

  • Pages from-to

    601-629

  • UT code for WoS article

    000475677200009

  • EID of the result in the Scopus database

    2-s2.0-85070079261