Deformations of coisotropic submanifolds in locally conformal symplectic manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00460701" target="_blank" >RIV/67985840:_____/16:00460701 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4310/AJM.2016.v20.n3.a7" target="_blank" >http://dx.doi.org/10.4310/AJM.2016.v20.n3.a7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/AJM.2016.v20.n3.a7" target="_blank" >10.4310/AJM.2016.v20.n3.a7</a>
Alternative languages
Result language
angličtina
Original language name
Deformations of coisotropic submanifolds in locally conformal symplectic manifolds
Original language description
In this paper, we study deformations of coisotropic submanifolds in a locally conformal symplectic manifold. Firstly, we derive two equivalent equations that govern Cinfty deformations of coisotropic submanifolds. Using the first equation we define the corresponding Cinfty moduli space of coisotropic submanifolds modulo the Hamiltonian isotopies. Secondly, we prove that the formal deformation problem is governed by an Linfty-structure which is a b-deformation of strong homotopy Lie algebroids introduced in [OP] in the symplectic context. Then we study deformations of locally conformal symplectic structures and their moduli space. Using the second equation we study the corresponding bulk (extended) deformations of coisotropic submanifolds. Finally we revisit Zambon’s obstructed infinitesimal deformation [Za] in this enlarged context and prove that it is still obstructed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Asian Journal of Mathematics
ISSN
1093-6106
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
44
Pages from-to
553-596
UT code for WoS article
000381328800007
EID of the result in the Scopus database
2-s2.0-84983554765