All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deformations of coisotropic submanifolds in locally conformal symplectic manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00460701" target="_blank" >RIV/67985840:_____/16:00460701 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4310/AJM.2016.v20.n3.a7" target="_blank" >http://dx.doi.org/10.4310/AJM.2016.v20.n3.a7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4310/AJM.2016.v20.n3.a7" target="_blank" >10.4310/AJM.2016.v20.n3.a7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deformations of coisotropic submanifolds in locally conformal symplectic manifolds

  • Original language description

    In this paper, we study deformations of coisotropic submanifolds in a locally conformal symplectic manifold. Firstly, we derive two equivalent equations that govern Cinfty deformations of coisotropic submanifolds. Using the first equation we define the corresponding Cinfty moduli space of coisotropic submanifolds modulo the Hamiltonian isotopies. Secondly, we prove that the formal deformation problem is governed by an Linfty-structure which is a b-deformation of strong homotopy Lie algebroids introduced in [OP] in the symplectic context. Then we study deformations of locally conformal symplectic structures and their moduli space. Using the second equation we study the corresponding bulk (extended) deformations of coisotropic submanifolds. Finally we revisit Zambon’s obstructed infinitesimal deformation [Za] in this enlarged context and prove that it is still obstructed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Asian Journal of Mathematics

  • ISSN

    1093-6106

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    44

  • Pages from-to

    553-596

  • UT code for WoS article

    000381328800007

  • EID of the result in the Scopus database

    2-s2.0-84983554765