Deformations of coisotropic submanifolds in Jacobi manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00501808" target="_blank" >RIV/67985840:_____/18:00501808 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4310/JSG.2018.v16.n4.a7" target="_blank" >http://dx.doi.org/10.4310/JSG.2018.v16.n4.a7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/JSG.2018.v16.n4.a7" target="_blank" >10.4310/JSG.2018.v16.n4.a7</a>
Alternative languages
Result language
angličtina
Original language name
Deformations of coisotropic submanifolds in Jacobi manifolds
Original language description
In this paper, we attach an L-infinity-algebra to any coisotropic submanifold in a Jacobi manifold. Our construction generalizes and unifies analogous constructions by Oh-Park (symplectic case), Cattaneo Felder (Poisson case), Le-Oh (locally conformal symplectic case). As a new special case, we attach an L-infinity-algebra to any coisotropic submanifold in a contact manifold. The L-infinity-algebra of a coisotropic submanifold S governs the (formal) deformation problem of S.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Symplectic Geometry
ISSN
1527-5256
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
66
Pages from-to
1051-1116
UT code for WoS article
000458305300007
EID of the result in the Scopus database
2-s2.0-85050486512