All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

HOMOGENEOUS SYMPLECTIC 4-MANIFOLDS AND FINITE DIMENSIONAL LIE ALGEBRAS OF SYMPLECTIC VECTOR FIELDS ON THE SYMPLECTIC 4-SPACE

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017270" target="_blank" >RIV/62690094:18470/20:50017270 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.mathjournals.org/mmj/2020-020-002/" target="_blank" >http://www.mathjournals.org/mmj/2020-020-002/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.17323/1609-4514-2020-20-2-217-256" target="_blank" >10.17323/1609-4514-2020-20-2-217-256</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    HOMOGENEOUS SYMPLECTIC 4-MANIFOLDS AND FINITE DIMENSIONAL LIE ALGEBRAS OF SYMPLECTIC VECTOR FIELDS ON THE SYMPLECTIC 4-SPACE

  • Original language description

    We classify the finite type (in the sense of E. Cartan theory of prolongations) subalgebras h subset of sp(V), where V is the symplectic 4-dimensional space, and show that they satisfy h((k)) = 0 for all k &gt; 0. Using this result, we reduce the problem of classification of graded transitive finite-dimensional Lie algebras g of symplectic vector fields on V to the description of graded transitive finite-dimensional subalgebras of the full prolongations p(1)((infinity)) and p(2)((infinity)), where p(1) and p(2) are the maximal parabolic subalgebras of sp(V). We then classify all such g subset of p(i)((infinity)), i = 1; 2, under some assumptions, and describe the associated 4-dimensional homogeneous symplectic manifolds (M = G/K, omega). We prove that any reductive homogeneous symplectic manifold (of any dimension) admits an invariant torsion free symplectic connection, i.e., it is a homogeneous Fedosov manifold, and give conditions for the uniqueness of the Fedosov structure. Finally, we show that any nilpotent symplectic Lie group (of any dimension) admits a natural invariant Fedosov structure which is Ricci-flat.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MOSCOW MATHEMATICAL JOURNAL

  • ISSN

    1609-3321

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    RU - RUSSIAN FEDERATION

  • Number of pages

    40

  • Pages from-to

    217-256

  • UT code for WoS article

    000526932000001

  • EID of the result in the Scopus database

    2-s2.0-85084201169