Homogeneous irreducible supermanifolds and graded Lie superalgebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F18%3A50014423" target="_blank" >RIV/62690094:18470/18:50014423 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1093/imrn/rnw262" target="_blank" >http://dx.doi.org/10.1093/imrn/rnw262</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imrn/rnw262" target="_blank" >10.1093/imrn/rnw262</a>
Alternative languages
Result language
angličtina
Original language name
Homogeneous irreducible supermanifolds and graded Lie superalgebras
Original language description
A depth one grading g = g(-1)circle plus g(0). g(1)circle plus ...circle plus g(l) of a finite dimensional Lie superalgebra g is called nonlinear irreducible if the isotropy representation ad (g0)vertical bar(g-1) is irreducible and g(1) not equal (0). An example is the full prolongation of an irreducible linear Lie superalgebra g(0) subset of gl(g(-1)) of finite type with non-trivial first prolongation. We prove that a complex Lie superalgebra g which admits a depth one transitive nonlinear irreducible grading is a semisimple Lie superalgebra with the socle s circle times Lambda (C-n), where s is a simple Lie superalgebra, and we describe such gradings. The graded Lie superalgebra g defines an isotropy irreducible homogeneous supermanifold M = G/G(0) where G, G(0) are Lie supergroups, respectively associated with the Lie superalgebras g and g(0) := circle plus(p >= 0) g(p).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INTERNATIONAL MATHEMATICS RESEARCH NOTICES
ISSN
1073-7928
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
35
Pages from-to
1045-1079
UT code for WoS article
000426130500003
EID of the result in the Scopus database
—