Tanaka structures (non holonomic G-structures) and Cartan connections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00087014" target="_blank" >RIV/00216224:14310/15:00087014 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.geomphys.2015.01.018" target="_blank" >http://dx.doi.org/10.1016/j.geomphys.2015.01.018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomphys.2015.01.018" target="_blank" >10.1016/j.geomphys.2015.01.018</a>
Alternative languages
Result language
angličtina
Original language name
Tanaka structures (non holonomic G-structures) and Cartan connections
Original language description
Let h = h(-k) circle plus ... circle plus h(1) (k > 0, l >= 0) be a finite dimensional graded Lie algebra, with a Euclidean metric <., .> adapted to the gradation. The metric <., .> is called admissible if the codifferentials partial derivative*: Ck+1 (h(-), j) -> C-k(h(-), h) (k >= 0) are Q-invariant (Lie(Q) = h(0) circle plus h(+)). We find necessary and sufficient conditions for a Euclidean metric, adapted to the gradation, to be admissible, and we develop a theory of normal Cartan connections, when these conditions are satisfied. We show how the treatment from Cap and Slovak (2009), about normal Cartan connections of semisimple type, fits into our theory. We also consider in detail the case when h := t*(g) is the cotangent Lie algebra of a non-positively graded Lie algebra g. (C) 2015 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0003" target="_blank" >EE2.3.20.0003: Algebraic methods in Geometry with views towards Applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
—
Volume of the periodical
91
Issue of the periodical within the volume
May
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
88-100
UT code for WoS article
000353600100008
EID of the result in the Scopus database
—