All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tanaka structures (non holonomic G-structures) and Cartan connections

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00087014" target="_blank" >RIV/00216224:14310/15:00087014 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.geomphys.2015.01.018" target="_blank" >http://dx.doi.org/10.1016/j.geomphys.2015.01.018</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.geomphys.2015.01.018" target="_blank" >10.1016/j.geomphys.2015.01.018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tanaka structures (non holonomic G-structures) and Cartan connections

  • Original language description

    Let h = h(-k) circle plus ... circle plus h(1) (k &gt; 0, l &gt;= 0) be a finite dimensional graded Lie algebra, with a Euclidean metric &lt;., .&gt; adapted to the gradation. The metric &lt;., .&gt; is called admissible if the codifferentials partial derivative*: Ck+1 (h(-), j) -&gt; C-k(h(-), h) (k &gt;= 0) are Q-invariant (Lie(Q) = h(0) circle plus h(+)). We find necessary and sufficient conditions for a Euclidean metric, adapted to the gradation, to be admissible, and we develop a theory of normal Cartan connections, when these conditions are satisfied. We show how the treatment from Cap and Slovak (2009), about normal Cartan connections of semisimple type, fits into our theory. We also consider in detail the case when h := t*(g) is the cotangent Lie algebra of a non-positively graded Lie algebra g. (C) 2015 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/EE2.3.20.0003" target="_blank" >EE2.3.20.0003: Algebraic methods in Geometry with views towards Applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Geometry and Physics

  • ISSN

    0393-0440

  • e-ISSN

  • Volume of the periodical

    91

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    88-100

  • UT code for WoS article

    000353600100008

  • EID of the result in the Scopus database