All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

SPECIAL VINBERG CONES

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018372" target="_blank" >RIV/62690094:18470/21:50018372 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00031-021-09649-w" target="_blank" >https://link.springer.com/article/10.1007/s00031-021-09649-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00031-021-09649-w" target="_blank" >10.1007/s00031-021-09649-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    SPECIAL VINBERG CONES

  • Original language description

    The paper is devoted to the generalization of the Vinberg theory of homogeneous convex cones. Such a cone is described as the set of &quot;positive definite matrices&quot; in the Vinberg commutative algebra H-n, of Hermitian T-matrices. These algebras are a generalization of Euclidean Jordan algebras and consist of n x n matrices A = (a(ij)), where a(ij) is an element of R, the entry a(ij) for i &lt; j belongs to some Euclidean vector space (V-ij, g) and a(ij) = a(ij)* = g(a(ij), .) is an element of V-ij* belongs to the dual space V-ij*. The multiplication of T-Hermitian matrices is defined by a system of &quot;isometric&quot; bilinear maps V-ij x V-jk -&gt; V-ij, i &lt; j &lt; k, such that vertical bar a(i)(j) . a(jk)vertical bar, = vertical bar a(ij)vertical bar, . vertical bar a(jk)vertical bar, a(lm) is an element of V-lm. For n = 2, the Hermitian T-algebra H-2 = 9 H-2 (V) is determined by a Euclidean vector space V and is isomorphic to a Euclidean Jordan algebra called the spin factor algebra and the associated homogeneous convex cone is the Lorentz cone of timelike future directed vectors in the Minkowski vector space R-1,R-1 circle plus V. A special Vinberg Hermitian T-algebra is a rank 3 matrix algebra 9 6(V, S) associated to a Clifford Cl(V)-module S together with an &quot;admissible&quot; Euclidean metric g(s). We generalize the construction of rank 2 Vinberg algebras H-2 (V) and special Vinberg algebras H-3 (V, S) to the pseudo-Euclidean case, when V is a pseudo-Euclidean vector space and S = S-0 circle plus S-1 is a Z(2)-graded Clifford Cl(V)-module with an admissible pseudoEuclidean metric. The associated cone V is a homogeneous, but not convex cone in H-m, m = 2, 3. We calculate the characteristic function of Koszul-Vinberg for this cone and write down the associated cubic polynomial. We extend Baez&apos; quantum-mechanical interpretation of the Vinberg cone V-2 subset of H-2(V) to the special rank 3 case.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Transformation Groups

  • ISSN

    1083-4362

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    26

  • Pages from-to

    377-402

  • UT code for WoS article

    000637460500001

  • EID of the result in the Scopus database

    2-s2.0-85107646905