Unitarity corridors to exceptional points
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F19%3A00509891" target="_blank" >RIV/61389005:_____/19:00509891 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1103/PhysRevA.100.032124" target="_blank" >https://doi.org/10.1103/PhysRevA.100.032124</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.100.032124" target="_blank" >10.1103/PhysRevA.100.032124</a>
Alternative languages
Result language
angličtina
Original language name
Unitarity corridors to exceptional points
Original language description
Phenomenological quantum Hamiltonians H-(N)(lambda) = J((N)) + lambda V-(N) (lambda) representing a general real N-2-parametric perturbation of an exceptional-point-related unperturbed Jordan-block Hamiltonian J((N)) are considered. Tractable as non-Hermitian (in a preselected, unphysical Hilbert space) as well as, simultaneously, Hermitian (in another, 'physical' Hilbert space), these matrices may represent a unitary, closed quantum system if and only if the spectrum is real. At small A we show that the parameters are then confined to a 'stability corridor' S of the access to the extreme dynamical exceptional-point lambda -> 0 regime. The corridors are narrow and N-dependent: they are formed by multiscale perturbations which are small in physical Hilbert space, i.e., which are such that lambda V-j+k,j((N)) (lambda) = O (lambda((k+1)/2)) at k = 1, 2, ..., N - 1 and all j.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review A
ISSN
2469-9926
e-ISSN
—
Volume of the periodical
100
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
032124
UT code for WoS article
000488248700004
EID of the result in the Scopus database
2-s2.0-85072921563