Theory of Response to Perturbations in Non-Hermitian Systems Using Five-Hilbert-Space Reformulation of Unitary Quantum Mechanics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F20%3A00523763" target="_blank" >RIV/61389005:_____/20:00523763 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/e22010080" target="_blank" >https://doi.org/10.3390/e22010080</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e22010080" target="_blank" >10.3390/e22010080</a>
Alternative languages
Result language
angličtina
Original language name
Theory of Response to Perturbations in Non-Hermitian Systems Using Five-Hilbert-Space Reformulation of Unitary Quantum Mechanics
Original language description
Non-Hermitian quantum-Hamiltonian-candidate combination H lambda of a non-Hermitian unperturbed operator H=H0 with an arbitrary 'small' non-Hermitian perturbation lambda W is given a mathematically consistent unitary-evolution interpretation. The formalism generalizes the conventional constructive Rayleigh-Schrodinger perturbation expansion technique. It is sufficiently general to take into account the well known formal ambiguity of reconstruction of the correct physical Hilbert space of states. The possibility of removal of the ambiguity via a complete, irreducible set of observables is also discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Entropy
ISSN
1099-4300
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
80
UT code for WoS article
000516825400102
EID of the result in the Scopus database
2-s2.0-85078530181