Special cases of critical linear difference equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00119263" target="_blank" >RIV/00216224:14310/21:00119263 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.14232/ejqtde.2021.1.79" target="_blank" >https://doi.org/10.14232/ejqtde.2021.1.79</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14232/ejqtde.2021.1.79" target="_blank" >10.14232/ejqtde.2021.1.79</a>
Alternative languages
Result language
angličtina
Original language name
Special cases of critical linear difference equations
Original language description
In this paper, we investigate even-order linear difference equations and their criticality. However, we restrict our attention only to several special cases of the general Sturm–Liouville equation. We wish to investigate on such cases a possible converse of a known theorem. This theorem holds for second-order equations as an equivalence; however, only one implication is known for even-order equations. First, we show the converse in a sense for one term equations. Later, we show an upper bound on criticality for equations with nonnegative coefficients as well. Finally, we extend the criticality of the second-order linear self-adjoint equation for the class of equations with interlacing indices. In this way, we can obtain concrete examples aiding us with our investigation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-11846S" target="_blank" >GA20-11846S: Differential and difference equations of real orders: Qualitative analysis and its applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Qualitative Theory of Differential Equations
ISSN
1417-3875
e-ISSN
—
Volume of the periodical
2021
Issue of the periodical within the volume
79
Country of publishing house
HU - HUNGARY
Number of pages
17
Pages from-to
1-17
UT code for WoS article
000706966700001
EID of the result in the Scopus database
2-s2.0-85118937310