Necessary and sufficient conditions of disconjugacy for the fourth order linear ordinary differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F21%3APU141882" target="_blank" >RIV/00216305:26510/21:PU141882 - isvavai.cz</a>
Result on the web
<a href="http://www.rmi.ge/eng/QUALITDE-2021/Mukhigulashvili_workshop_2021.pdf" target="_blank" >http://www.rmi.ge/eng/QUALITDE-2021/Mukhigulashvili_workshop_2021.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Necessary and sufficient conditions of disconjugacy for the fourth order linear ordinary differential equations
Original language description
We study the disconjugacy of the fourth order linear ordinary differential equation u(4)(t) = p(t)u(t); on the interval [a; b]: We find necessary and sufficient conditions for the disconjugacy on [a; b], which have the comparison theorems character. Our results complete Kondrat'ev's second comparison theorem for the case of the fourth order ODE. The above mentioned conditions significantly improve Coppel's well-known condition which guarantees the disconjugacy of our equation for not necessarily constant sign coefficient p; and generalise some optimal disconjugacy results proved for constant-coefficient equations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
B MATH SOC SCI MATH
ISSN
1220-3874
e-ISSN
2065-0264
Volume of the periodical
2021
Issue of the periodical within the volume
4
Country of publishing house
RO - ROMANIA
Number of pages
13
Pages from-to
341-353
UT code for WoS article
000722925400004
EID of the result in the Scopus database
—