Which Categories Are Varieties?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00119337" target="_blank" >RIV/00216224:14310/21:00119337 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/21:00363398
Result on the web
<a href="https://drops.dagstuhl.de/opus/volltexte/2021/15361/" target="_blank" >https://drops.dagstuhl.de/opus/volltexte/2021/15361/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CALCO.2021.6" target="_blank" >10.4230/LIPIcs.CALCO.2021.6</a>
Alternative languages
Result language
angličtina
Original language name
Which Categories Are Varieties?
Original language description
Categories equivalent to single-sorted varieties of finitary algebras were characterized in the famous dissertation of Lawvere. We present a new proof of a slightly sharpened version: those are precisely the categories with kernel pairs and reflexive coequalizers having an abstractly finite, effective strong generator. A completely analogous result is proved for varieties of many-sorted algebras provided that there are only finitely many sorts. In case of infinitely many sorts a slightly weaker result is presented: instead of being abstractly finite, the generator is required to consist of finitely presentable objects.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CALCO 2021: 9th Conference on Algebra and Coalgebra in Computer Science
ISBN
9783959772129
ISSN
1868-8969
e-ISSN
—
Number of pages
14
Pages from-to
„6:1“-„6:14“
Publisher name
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing
Place of publication
Saarbrücken/Wadern
Event location
Salzburg, Austria
Event date
Aug 31, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—