Which categories are varieties?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00363398" target="_blank" >RIV/68407700:21230/21:00363398 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/21:00119337
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.CALCO.2021.6" target="_blank" >https://doi.org/10.4230/LIPIcs.CALCO.2021.6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CALCO.2021.6" target="_blank" >10.4230/LIPIcs.CALCO.2021.6</a>
Alternative languages
Result language
angličtina
Original language name
Which categories are varieties?
Original language description
Categories equivalent to single-sorted varieties of finitary algebras were characterized in the famous dissertation of Lawvere. We present a new proof of a slightly sharpened version: those are precisely the categories with kernel pairs and reflexive coequalizers having an abstractly finite, effective strong generator. A completely analogous result is proved for varieties of many-sorted algebras provided that there are only finitely many sorts. In case of infinitely many sorts a slightly weaker result is presented: instead of being abstractly finite, the generator is required to consist of finitely presentable objects.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021)
ISBN
978-3-95977-212-9
ISSN
1868-8969
e-ISSN
—
Number of pages
14
Pages from-to
1-14
Publisher name
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Place of publication
Dagstuhl
Event location
Salzburg
Event date
Aug 31, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—