Riccati technique and oscillation of linear second-order difference equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00119358" target="_blank" >RIV/00216224:14310/21:00119358 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00013-021-01649-2" target="_blank" >https://doi.org/10.1007/s00013-021-01649-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00013-021-01649-2" target="_blank" >10.1007/s00013-021-01649-2</a>
Alternative languages
Result language
angličtina
Original language name
Riccati technique and oscillation of linear second-order difference equations
Original language description
In this paper, we analyse oscillatory properties of a general class of linear difference equations. Applying the modified Riccati technique, we prove an oscillation criterion for the studied equations and we formulate its consequences. In contrast to many known criteria, in the presented results, there are not considered any auxiliary sequences. The results are based directly on the coefficients of the treated equations, i.e., the obtained results are easy to use. In addition, recently, we have proved a non-oscillatory counterpart of the presented criterion. The combination implies that the studied equations are conditionally oscillatory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-11846S" target="_blank" >GA20-11846S: Differential and difference equations of real orders: Qualitative analysis and its applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archiv der Mathematik
ISSN
0003-889X
e-ISSN
1420-8938
Volume of the periodical
117
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
657-669
UT code for WoS article
000690371100002
EID of the result in the Scopus database
2-s2.0-85113591627