Weighted Cauchy problem: fractional versus integer order
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00119684" target="_blank" >RIV/00216224:14310/21:00119684 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/jie.2021.33-4" target="_blank" >https://doi.org/jie.2021.33-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1216/jie.2021.33.497" target="_blank" >10.1216/jie.2021.33.497</a>
Alternative languages
Result language
angličtina
Original language name
Weighted Cauchy problem: fractional versus integer order
Original language description
This work is devoted to the solvability of the weighted Cauchy problem for fractional differential equations of arbitrary order, considering the Riemann–Liouville derivative. We show the equivalence between the weighted Cauchy problem and the Volterra integral equation in the space of Lebesgue integrable functions. Finally, we point out some discrepancies between the solutions for fractional and integer order case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-11846S" target="_blank" >GA20-11846S: Differential and difference equations of real orders: Qualitative analysis and its applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Integral Equations and Applications
ISSN
0897-3962
e-ISSN
1938-2626
Volume of the periodical
33
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
497-509
UT code for WoS article
000768273500007
EID of the result in the Scopus database
2-s2.0-85126935664