Asymptotic integration of fractional differential equations with integrodifferential right-hand side
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F15%3APU115094" target="_blank" >RIV/00216305:26220/15:PU115094 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3846/13926292.2015.1068233" target="_blank" >http://dx.doi.org/10.3846/13926292.2015.1068233</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3846/13926292.2015.1068233" target="_blank" >10.3846/13926292.2015.1068233</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic integration of fractional differential equations with integrodifferential right-hand side
Original language description
In this paper we deal with the problem of asymptotic integration of a class of fractional differential equations of the Caputo type. The left-hand side of such type of equation is the Caputo derivative of the fractional order r∈(n-1,n) of the solution, and the right-hand side depends not only on ordinary derivatives up to order n-1 but also on the Caputo derivatives of fractional orders 0<r_1<...<r_m<r, and the Riemann-Liouville fractional integrals of positive orders. We give some conditions under which for any global solution x(t) of the equation, there is a constant c∈R such that x(t)=ct^q+o(t^q) as t→∞, where q=max{n-1,r_m}.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0068" target="_blank" >ED1.1.00/02.0068: Central european institute of technology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Modelling and Analysis
ISSN
1392-6292
e-ISSN
1648-3510
Volume of the periodical
20
Issue of the periodical within the volume
4
Country of publishing house
LT - LITHUANIA
Number of pages
19
Pages from-to
471-489
UT code for WoS article
000359478700003
EID of the result in the Scopus database
2-s2.0-84938853132