All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of a non-thermal atmospheric pressure plasma jet on four different yeasts

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00120795" target="_blank" >RIV/00216224:14310/21:00120795 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1361-6463/abb624" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6463/abb624</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6463/abb624" target="_blank" >10.1088/1361-6463/abb624</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of a non-thermal atmospheric pressure plasma jet on four different yeasts

  • Original language description

    Non-thermal atmospheric pressure plasmas are known to be an effective method for the inactivation of microorganisms. However, yeasts have proved to be more resistant to provided treatments. We investigated the influence of an Argon plasma jet on the inactivation of four different yeasts; Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida parapsilosis and Magnusiomyces magnusii. Results from direct plasma treatment on the yeasts in distilled water, as the most effective technique we found, are presented here. The surviving yeasts after 5, 7, and 10 min plasma exposures were evaluated visually and quantitatively. Quantitative results showed strong reductions in the survival rates after the plasma treatment. The longest plasma exposure time yielded the least survival. Moreover, how long the inactivations lasted was evaluated by assessing the treated samples after 1 h and again after 2 h. The survival rates were further decreased within these storage times. In the 10 min treated-2 h stored samples, the rates dropped to 5% or even below, depending on the yeast species. High concentrations of reactive oxygen and nitrogen species in the plasma-air-water interacting system were detected by optical emission spectroscopy of the plasma jet and also by measuring concentrations of H2O2, NO2- and NO3- in plasma activated water (as the surrounding liquid for the yeasts). The conductivity and pH of the treated water was measured as well. The level of the conductivity increased along with the decrease in pH. Synergistic effects of these chemical reactive species in acidified water resulted in the yeast inactivation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of physics D: Applied physics

  • ISSN

    0022-3727

  • e-ISSN

    1361-6463

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000581600900001

  • EID of the result in the Scopus database

    2-s2.0-85094956493