All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robustness of regularity for the 3D convective Brinkman-Forchheimer equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00121442" target="_blank" >RIV/00216224:14310/21:00121442 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jmaa.2021.125058" target="_blank" >https://doi.org/10.1016/j.jmaa.2021.125058</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2021.125058" target="_blank" >10.1016/j.jmaa.2021.125058</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robustness of regularity for the 3D convective Brinkman-Forchheimer equations

  • Original language description

    We prove a robustness of regularity result for the 3D convective Brinkman-Forchheimer equations partial derivative(t)u - mu Delta u + (u . del) u + del p + alpha u + beta vertical bar u vertical bar(r-1) u = f, for the range of the absorption exponent r is an element of[1, 3] (for r &gt; 3 there exist global-in-time regular solutions), i.e. we show that strong solutions of these equations remain strong under small enough changes of the initial condition and forcing function. We provide a smallness condition which is similar to the robustness conditions given for the 3D incompressible Navier-Stokes equations by Chernyshenko et al. [5] and Dashti &amp; Robinson [8].

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Volume of the periodical

    500

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

    „125058“

  • UT code for WoS article

    000634827700001

  • EID of the result in the Scopus database

    2-s2.0-85101366910