Robustness of regularity for the 3D convective Brinkman-Forchheimer equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00121442" target="_blank" >RIV/00216224:14310/21:00121442 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jmaa.2021.125058" target="_blank" >https://doi.org/10.1016/j.jmaa.2021.125058</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2021.125058" target="_blank" >10.1016/j.jmaa.2021.125058</a>
Alternative languages
Result language
angličtina
Original language name
Robustness of regularity for the 3D convective Brinkman-Forchheimer equations
Original language description
We prove a robustness of regularity result for the 3D convective Brinkman-Forchheimer equations partial derivative(t)u - mu Delta u + (u . del) u + del p + alpha u + beta vertical bar u vertical bar(r-1) u = f, for the range of the absorption exponent r is an element of[1, 3] (for r > 3 there exist global-in-time regular solutions), i.e. we show that strong solutions of these equations remain strong under small enough changes of the initial condition and forcing function. We provide a smallness condition which is similar to the robustness conditions given for the 3D incompressible Navier-Stokes equations by Chernyshenko et al. [5] and Dashti & Robinson [8].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
500
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
„125058“
UT code for WoS article
000634827700001
EID of the result in the Scopus database
2-s2.0-85101366910