New magnetic chemically peculiar stars and candidates in the ATLAS first catalogue of variable stars
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00125882" target="_blank" >RIV/00216224:14310/21:00125882 - isvavai.cz</a>
Result on the web
<a href="https://academic.oup.com/mnras/article-abstract/506/3/4561/6324590" target="_blank" >https://academic.oup.com/mnras/article-abstract/506/3/4561/6324590</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/mnras/stab2065" target="_blank" >10.1093/mnras/stab2065</a>
Alternative languages
Result language
angličtina
Original language name
New magnetic chemically peculiar stars and candidates in the ATLAS first catalogue of variable stars
Original language description
The number of known variable stars has increased by several magnitudes over the last decade, and automated classification routines are becoming increasingly important to cope with this development. Here we show that the ‘upside-down CBH variables’, which were proposed as a potentially new class of variable stars by Heinze et al. in the ATLAS First Catalogue of Variable Stars, are, at least to a high percentage, made up of α2 Canum Venaticorum (ACV) variables – that is, photometrically variable magnetic chemically peculiar (CP2/He-peculiar) stars – with distinct double-wave light curves. Using suitable selection criteria, we identified 264 candidate ACV variables in the ATLAS variable star catalogue. 62 of these objects were spectroscopically confirmed with spectra from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (all new discoveries except for nine stars) and classified on the MK system. The other 202 stars are here presented as ACV star candidates that require spectroscopic confirmation. The vast majority of our sample of stars are main-sequence objects. Derived masses range from 1.4 M⊙ to 5 M⊙, with half our sample stars being situated in the range from 2 M⊙ to 2.4 M⊙, in good agreement with the spectral classifications. Most stars belong to the thin or thick disc; four objects, however, classify as members of the halo population. With a peak magnitude distribution at around 14th magnitude, the here presented stars are situated at the faint end of the known Galactic mCP star population. Our study highlights the need to consider rare variability classes, like ACV variables, in automated classification routines.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Monthly Notices of the Royal Astronomical Society
ISSN
0035-8711
e-ISSN
1365-2966
Volume of the periodical
506
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
4561-4577
UT code for WoS article
000741355900027
EID of the result in the Scopus database
2-s2.0-85119126635