All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Phase formation, thermal stability and mechanical properties of Nb-B-C coatings prepared by combinatorial magnetron sputtering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00119610" target="_blank" >RIV/00216224:14310/22:00119610 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0257897222000585" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0257897222000585</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.surfcoat.2022.128137" target="_blank" >10.1016/j.surfcoat.2022.128137</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Phase formation, thermal stability and mechanical properties of Nb-B-C coatings prepared by combinatorial magnetron sputtering

  • Original language description

    In this study, combinatorial magnetron sputtering was used to deposit Nb-B-C coatings in a wide composition range. The phase formation, thermal stability and mechanical properties of these coatings were investigated in relation to their composition and deposition conditions. The studied coatings were amorphous, short range ordered or exhibited crystalline phases such as Nb, NbC and NbB2. Higher energy flux to the coating achieved by the use of bias and heating during deposition resulted in coatings being crystalline over a wider composition range. Annealing of the coatings after deposition resulted in a higher degree of crystallinity as well as an increase in hardness and effective elastic modulus. The hardness of the coatings was up to 22.5 ± 0.7 GPa before and up to 35.0 ± 0.6 GPa after annealing. The effective elastic modulus was up to 240 ± 10 GPa before and up to 310 ± 7 GPa after annealing. Coatings with a high B content exhibited the highest hardness and elastic modulus in both cases. Coating powder was prepared by sputtering a Nb2BC target and studied using differential scanning calorimetry. The powder exhibited a crystalline NbC phase before and after annealing up to 900 °C. The material was stable in an Ar atmosphere in the studied temperature range. In an Ar + O2 mixture, the powder was stable up to ~580 °C. At this temperature, an oxidation reaction started, resulting in the formation of Nb2O5.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20506 - Coating and films

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Surface & Coatings Technology

  • ISSN

    0257-8972

  • e-ISSN

    1879-3347

  • Volume of the periodical

    433

  • Issue of the periodical within the volume

    March

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

    000782660300003

  • EID of the result in the Scopus database

    2-s2.0-85123722275