The c-map as a functor on certain variations of Hodge structure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00125737" target="_blank" >RIV/00216224:14310/22:00125737 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s10711-022-00692-9" target="_blank" >https://link.springer.com/article/10.1007/s10711-022-00692-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10711-022-00692-9" target="_blank" >10.1007/s10711-022-00692-9</a>
Alternative languages
Result language
angličtina
Original language name
The c-map as a functor on certain variations of Hodge structure
Original language description
We give a new manifestly natural presentation of the supergravity c-map. We achieve this by giving a more explicit description of the correspondence between projective special Kähler manifolds and variations of Hodge structure, and by demonstrating that the twist construction of Swann, for a certain kind of twist data, reduces to a quotient by a discrete group. We combine these two ideas by showing that variations of Hodge structure give rise to the aforementioned kind of twist data and by then applying the twist realisation of the c-map due to Macia and Swann. This extends previous results regarding the lifting of general isomorphisms along the undeformed c-map, and of infinitesimal automorphisms along the deformed c-map. We show in fact that general isomorphisms can be naturally lifted along the deformed c-map.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-06357S" target="_blank" >GA19-06357S: Geometric structures, differential operators and symmetries</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Geometriae Dedicata
ISSN
0046-5755
e-ISSN
1572-9168
Volume of the periodical
216
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
42
Pages from-to
1-42
UT code for WoS article
000782995400001
EID of the result in the Scopus database
2-s2.0-85128298062