All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modelling of dcMS and HiPIMS process with hydrocarbon gas admixture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00126228" target="_blank" >RIV/00216224:14310/22:00126228 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1361-6595/ac7746" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/ac7746</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/ac7746" target="_blank" >10.1088/1361-6595/ac7746</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modelling of dcMS and HiPIMS process with hydrocarbon gas admixture

  • Original language description

    Magnetron sputtering in an argon and hydrocarbon gas mixture is a complex deposition process exhibiting features of both physical vapour deposition and plasma enhanced chemical vapour deposition. The hydrocarbon gas decomposes within the plasma and then it is able to form a carbide phase with the target metal atoms or to be deposited as amorphous carbon. In this paper, a simple model for both the direct current (dcMS) and the high power impulse magnetron sputtering (HiPIMS) processes with hydrocarbon gas admixture is presented. The sputtered target racetrack is divided into metallic, compound, and carbon fractions to take into account both the carbide formation and the carbon deposition. To simulate the HiPIMS process, the back-attraction of ionised sputtered metal particles is incorporated into the model. The model is cross-validated with the previously published experiments which were conducted using the same deposition apparatus allowing for the direct comparison of the dcMS and HiPIMS processes. The simulated results correlate with the measured dependencies of the deposition rate, the carbon content in deposited films, and the racetrack fractions on the acetylene supply rate. The presented model is further successfully validated with the evolution of the racetrack composition calculated by SDTrimSP.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plasma Sources Science and Technology

  • ISSN

    0963-0252

  • e-ISSN

    1361-6595

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    1-8

  • UT code for WoS article

    000818461500001

  • EID of the result in the Scopus database

    2-s2.0-85133656194