All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Remarks on the Symmetries of a Model Hypersurface

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00127778" target="_blank" >RIV/00216224:14310/22:00127778 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s10476-022-0157-3" target="_blank" >https://link.springer.com/article/10.1007/s10476-022-0157-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10476-022-0157-3" target="_blank" >10.1007/s10476-022-0157-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Remarks on the Symmetries of a Model Hypersurface

  • Original language description

    In this partly expository paper, we deal with sharp jet determination results following from a generalization of the Chern—Moser theory to Levi degenerate hypersurfaces with polynomial models, as obtained in [30]. We formulate the jet determination results for finitely smooth hypersurfaces of finite type. Another goal of the paper is to gain more understanding of the symmetries for such hypersurfaces, which violate 2-jet determination. Finally, we collect and state some open problems regarding the existence of graded components of strictly positive weight of the Lie Algebra of symmetries for the model hypersurface.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Analysis Mathematica

  • ISSN

    0133-3852

  • e-ISSN

    1588-273X

  • Volume of the periodical

    48

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    21

  • Pages from-to

    545-565

  • UT code for WoS article

    000799547900001

  • EID of the result in the Scopus database

    2-s2.0-85130263773