Chern-Moser operators and polynomial models in CR geometry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00079896" target="_blank" >RIV/00216224:14310/14:00079896 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aim.2014.06.017" target="_blank" >http://dx.doi.org/10.1016/j.aim.2014.06.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2014.06.017" target="_blank" >10.1016/j.aim.2014.06.017</a>
Alternative languages
Result language
angličtina
Original language name
Chern-Moser operators and polynomial models in CR geometry
Original language description
We consider the fundamental invariant of a real hypersurface in C-N - its holomorphic symmetry group - and analyze its structure at a point of degenerate Levi form. Generalizing the Chern-Moser operator to hypersurfaces of finite multitype, we compute the Lie algebra of infinitesimal symmetries of the model and provide explicit description for each graded component. Compared with a hyperquadric, it may contain additional components consisting of nonlinear vector fields defined in terms of complex tangential variables. As a consequence, we obtain exact results on jet determination for hypersurfaces with such models. The results generalize directly the fundamental result of Chern and Moser from quadratic models to polynomials of higher degree. (C) 2014 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0003" target="_blank" >EE2.3.20.0003: Algebraic methods in Geometry with views towards Applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
263
Issue of the periodical within the volume
OCTOBER
Country of publishing house
US - UNITED STATES
Number of pages
36
Pages from-to
321-356
UT code for WoS article
000340351500009
EID of the result in the Scopus database
—