On semidirectly closed pseudovarieties of finite semigroups and monoids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00129145" target="_blank" >RIV/00216224:14310/22:00129145 - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/services/aop-cambridge-core/content/view/C97088F30E561DB1FDD6F5A20DC414D5/S0008439521000564a.pdf/on-semidirectly-closed-pseudovarieties-of-finite-semigroups-and-monoids.pdf" target="_blank" >https://www.cambridge.org/core/services/aop-cambridge-core/content/view/C97088F30E561DB1FDD6F5A20DC414D5/S0008439521000564a.pdf/on-semidirectly-closed-pseudovarieties-of-finite-semigroups-and-monoids.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4153/S0008439521000564" target="_blank" >10.4153/S0008439521000564</a>
Alternative languages
Result language
angličtina
Original language name
On semidirectly closed pseudovarieties of finite semigroups and monoids
Original language description
For every pseudovariety V of finite monoids, let LV denote the pseudovariety of all finite semigroups all of whose local submonoids belong to V. In this paper, it is shown that, for every nontrivial semidirectly closed pseudovariety V of finite monoids, the pseudovariety LV of finite semigroups is also semidirectly closed if, and only if, the given pseudovariety V is local in the sense of Tilson. This finding resolves a long-standing open problem posed in the second volume of the classic monograph by Eilenberg.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-12790S" target="_blank" >GA19-12790S: Effective characterizations of classes of finite semigroups and formal languages</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES
ISSN
0008-4395
e-ISSN
1496-4287
Volume of the periodical
65
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
612-627
UT code for WoS article
000744346800001
EID of the result in the Scopus database
2-s2.0-85113172533