An upper bound for the power pseudovariety PCS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00062631" target="_blank" >RIV/00216224:14310/12:00062631 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00605-011-0285-5" target="_blank" >http://dx.doi.org/10.1007/s00605-011-0285-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-011-0285-5" target="_blank" >10.1007/s00605-011-0285-5</a>
Alternative languages
Result language
angličtina
Original language name
An upper bound for the power pseudovariety PCS
Original language description
It is a celebrated result in finite semigroup theory that the equality of pseudovarieties PG=BG holds, where PG is the pseudovariety of finite monoids generated by all power monoids of finite groups and BG is the pseudovariety of all block groups, that is, the pseudovariety of all finite monoids all of whose regular D-classes have the property that the corresponding principal factors are inverse semigroups. Moreover, it is well known that BG=JmG, where JmG is the pseudovariety of finite monoids generated by the Mal?cev product of the pseudovarieties J and G of all finite J-trivial monoids and of all finite groups, respectively. In this paper, a more general kind of finite semigroups is considered; namely, the so-called aggregates of block groups are introduced. It follows that the class AgBG of all aggregates of block groups forms a pseudovariety of finite semigroups.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Monatshefte für Mathematik
ISSN
0026-9255
e-ISSN
—
Volume of the periodical
166
Issue of the periodical within the volume
3-4
Country of publishing house
AT - AUSTRIA
Number of pages
30
Pages from-to
411
UT code for WoS article
000304564700010
EID of the result in the Scopus database
—