On a locality-like property of the pseudovariety J
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00106425" target="_blank" >RIV/00216224:14310/18:00106425 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007%2Fs10998-017-0186-z.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs10998-017-0186-z.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10998-017-0186-z" target="_blank" >10.1007/s10998-017-0186-z</a>
Alternative languages
Result language
angličtina
Original language name
On a locality-like property of the pseudovariety J
Original language description
It is well known that the pseudovariety J of all J-trivial monoids is not local, which means that the pseudovariety gJ of categories generated by J is a proper subpseudovariety of the pseudovariety lJ of categories all of whose local monoids belong to J. In this paper, it is proved that the pseudovariety J enjoys the following weaker property. For every prime number p, the pseudovariety lJ is a subpseudovariety of the pseudovariety g(J*Abp), where Abp is the pseudovariety of all elementary abelian p-groups and J*Abp is the pseudovariety of monoids generated by the class of all semidirect products of monoids from J by groups from Abp. As an application, a new proof of the celebrated equality of pseudovarieties PG=BG is obtained, where PG is the pseudovariety of monoids generated by the class of all power monoids of groups and BG is the pseudovariety of all block groups.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Periodica mathematica Hungarica
ISSN
0031-5303
e-ISSN
1588-2829
Volume of the periodical
76
Issue of the periodical within the volume
1
Country of publishing house
HU - HUNGARY
Number of pages
46
Pages from-to
1-46
UT code for WoS article
000425544200001
EID of the result in the Scopus database
2-s2.0-85019757437