On the existence of multiple solutions for fractional Brezis-Nirenberg-type equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00129376" target="_blank" >RIV/00216224:14310/22:00129376 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/mana.202000098" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/mana.202000098</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202000098" target="_blank" >10.1002/mana.202000098</a>
Alternative languages
Result language
angličtina
Original language name
On the existence of multiple solutions for fractional Brezis-Nirenberg-type equations
Original language description
This paper studies the nonlocal fractional analog of the famous paper of Brezis and Nirenberg [Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477]. Namely, we focus on the following model: (p){(-Delta)(s)u-lambda u = alpha vertical bar u vertical bar(p-2)u+beta vertical bar u vertical bar(2s)*(-2)u in Omega, u = 0 in R-N Omega, where (-Delta)(s) is the fractional Laplace operator, s is an element of (0,1), with N > 2s, 2 < p < 2(s)*, beta > 0, lambda, alpha is an element of R, and establish the existence of nontrivial solutions and sign-changing solutions for the problem (P).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Linear and nonlinear elliptic equations with singular data and related problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
295
Issue of the periodical within the volume
12
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
2405-2421
UT code for WoS article
000869576500001
EID of the result in the Scopus database
2-s2.0-85140066502