Polynomial null solutions to bosonic Laplacians, bosonic bergman and hardy spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00129420" target="_blank" >RIV/00216224:14310/22:00129420 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1017/S0013091522000426" target="_blank" >https://doi.org/10.1017/S0013091522000426</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0013091522000426" target="_blank" >10.1017/S0013091522000426</a>
Alternative languages
Result language
angličtina
Original language name
Polynomial null solutions to bosonic Laplacians, bosonic bergman and hardy spaces
Original language description
A bosonic Laplacian, which is a generalization of Laplacian, is constructed as a second-order conformally invariant differential operator acting on functions taking values in irreducible representations of the special orthogonal group, hence of the spin group. In this paper, we firstly introduce some properties for homogeneous polynomial null solutions to bosonic Laplacians, which give us some important results, such as an orthogonal decomposition of the space of polynomials in terms of homogeneous polynomial null solutions to bosonic Laplacians, etc. This work helps us to introduce Bergman spaces related to bosonic Laplacians, named as bosonic Bergman spaces, in higher spin spaces. Reproducing kernels for bosonic Bergman spaces in the unit ball and a description of bosonic Bergman projection are given as well. At the end, we investigate bosonic Hardy spaces, which are considered as generalizations of harmonic Hardy spaces. Analogs of some well-known results for harmonic Hardy spaces are provided here. For instance, connections to certain complex Borel measure spaces, growth estimates for functions in the bosonic Hardy spaces, etc.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Linear and nonlinear elliptic equations with singular data and related problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the Edinburgh Mathematical Society
ISSN
0013-0915
e-ISSN
1464-3839
Volume of the periodical
65
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
32
Pages from-to
958-989
UT code for WoS article
000867457500001
EID of the result in the Scopus database
2-s2.0-85147498431