All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Omics-based approach to study honey bee (Apis mellifera) response to parasitic mite Varroa sp. and associated pathogens

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00129442" target="_blank" >RIV/00216224:14310/22:00129442 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Omics-based approach to study honey bee (Apis mellifera) response to parasitic mite Varroa sp. and associated pathogens

  • Original language description

    Honey bees (Apis mellifera L.) are the most important managed pollinators worldwide, and according to the estimates, about two-thirds of crops used in human food production are dependent on pollination. A long history of domestication and international transport of A. mellifera has resulted in a cosmopolitan distribution of the bees, but unfortunately, also its pathogens and parasites, which are considered to be one of the main factors behind honey bee losses. Therefore, the global decline of the honey bee population poses a significant social, economic, and scientific concern. Despite years of intensive research, the complex mechanisms of Varroa-honey bee interaction are still not untangled. Therefore, we employed a unique combination of transcriptomic, proteomic, metabolomic, and functional analyses to reveal new details about the effect of Varroa mites and naturally associated factors, including viruses, on honey bees. We focused on differences between Varroa-parasitised and unparasitised ten-day-old worker bees collected before overwintering from the same set of colonies reared without anti-mite treatment. Significant changes were observed at all organismal levels in immunity, oxidative stress response, olfactory recognition and other specific processes. Moreover, the supplementary comparison to honey bees collected from colonies with standard anti-Varroa treatment provides insights into the effect of a pyrethroid flumethrin. Recent findings of omics analyses help reveal new details of honey bee response to parasitic mites and suggest new ways to control diseases of this beneficial insect. Our work is supported by the Ministry of Agriculture of the Czech Republic grant NAZV no. QK1910286; SFI Research Infrastructure Call 2012 (12/RI/2346 (3)) and Projects of Large Research, Development and Innovations Infrastructures "e-Infrastruktura CZ" (e-INFRA LM2018140).

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    <a href="/en/project/QK1910286" target="_blank" >QK1910286: Effective procedures and strategies for managing of honey bee diseases and sustainable bee keeping</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů