Adjoint functor theorems for homotopically enriched categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00130448" target="_blank" >RIV/00216224:14310/23:00130448 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0001870822006296" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0001870822006296</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2022.108812" target="_blank" >10.1016/j.aim.2022.108812</a>
Alternative languages
Result language
angličtina
Original language name
Adjoint functor theorems for homotopically enriched categories
Original language description
We prove an adjoint functor theorem in the setting of categories enriched in a monoidal model category admitting certain limits. When is equipped with the trivial model structure this recaptures the enriched version of Freyd's adjoint functor theorem. For non-trivial model structures, we obtain new adjoint functor theorems of a homotopical flavour — in particular, when is the category of simplicial sets we obtain a homotopical adjoint functor theorem appropriate to the ∞-cosmoi of Riehl and Verity. We also investigate accessibility in the enriched setting, in particular obtaining homotopical cocompleteness results for accessible ∞-cosmoi.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
1090-2082
Volume of the periodical
412
Issue of the periodical within the volume
January
Country of publishing house
US - UNITED STATES
Number of pages
52
Pages from-to
1-52
UT code for WoS article
000917738500010
EID of the result in the Scopus database
2-s2.0-85143979763