All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Adjoint functor theorems for homotopically enriched categories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00130448" target="_blank" >RIV/00216224:14310/23:00130448 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0001870822006296" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0001870822006296</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2022.108812" target="_blank" >10.1016/j.aim.2022.108812</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Adjoint functor theorems for homotopically enriched categories

  • Original language description

    We prove an adjoint functor theorem in the setting of categories enriched in a monoidal model category admitting certain limits. When is equipped with the trivial model structure this recaptures the enriched version of Freyd's adjoint functor theorem. For non-trivial model structures, we obtain new adjoint functor theorems of a homotopical flavour — in particular, when is the category of simplicial sets we obtain a homotopical adjoint functor theorem appropriate to the ∞-cosmoi of Riehl and Verity. We also investigate accessibility in the enriched setting, in particular obtaining homotopical cocompleteness results for accessible ∞-cosmoi.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

    1090-2082

  • Volume of the periodical

    412

  • Issue of the periodical within the volume

    January

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    52

  • Pages from-to

    1-52

  • UT code for WoS article

    000917738500010

  • EID of the result in the Scopus database

    2-s2.0-85143979763