A sharp characterization of the Willmore invariant
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00131503" target="_blank" >RIV/00216224:14310/23:00131503 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1142/S0129167X23500544" target="_blank" >https://doi.org/10.1142/S0129167X23500544</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129167X23500544" target="_blank" >10.1142/S0129167X23500544</a>
Alternative languages
Result language
angličtina
Original language name
A sharp characterization of the Willmore invariant
Original language description
First introduced to describe surfaces embedded in R3, the Willmore invariant is a conformally-invariant extrinsic scalar curvature of a surface that vanishes when the surface minimizes bending and stretching. Both this invariant and its higher-dimensional analogs appear frequently in the study of conformal geometric systems. To that end, we provide a characterization of the Willmore invariant in general dimensions. In particular, we provide a sharp sufficient condition for the vanishing of the Willmore invariant and show that in even dimensions it can be described fully using conformal fundamental forms and one additional tensor.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Mathematics
ISSN
0129-167X
e-ISSN
1793-6519
Volume of the periodical
34
Issue of the periodical within the volume
9
Country of publishing house
SG - SINGAPORE
Number of pages
32
Pages from-to
1-32
UT code for WoS article
001026038800002
EID of the result in the Scopus database
2-s2.0-85165146305