All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A sharp characterization of the Willmore invariant

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00131503" target="_blank" >RIV/00216224:14310/23:00131503 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1142/S0129167X23500544" target="_blank" >https://doi.org/10.1142/S0129167X23500544</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0129167X23500544" target="_blank" >10.1142/S0129167X23500544</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A sharp characterization of the Willmore invariant

  • Original language description

    First introduced to describe surfaces embedded in R3, the Willmore invariant is a conformally-invariant extrinsic scalar curvature of a surface that vanishes when the surface minimizes bending and stretching. Both this invariant and its higher-dimensional analogs appear frequently in the study of conformal geometric systems. To that end, we provide a characterization of the Willmore invariant in general dimensions. In particular, we provide a sharp sufficient condition for the vanishing of the Willmore invariant and show that in even dimensions it can be described fully using conformal fundamental forms and one additional tensor.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Mathematics

  • ISSN

    0129-167X

  • e-ISSN

    1793-6519

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    32

  • Pages from-to

    1-32

  • UT code for WoS article

    001026038800002

  • EID of the result in the Scopus database

    2-s2.0-85165146305