Finitary Prelinear and Linear Orthosets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00132883" target="_blank" >RIV/00216224:14310/23:00132883 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s10773-023-05356-2" target="_blank" >https://doi.org/10.1007/s10773-023-05356-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10773-023-05356-2" target="_blank" >10.1007/s10773-023-05356-2</a>
Alternative languages
Result language
angličtina
Original language name
Finitary Prelinear and Linear Orthosets
Original language description
An orthoset is a set equipped with a symmetric and irreflexive binary relation. A linear orthoset is an orthoset such that for any two distinct elements e, f there is a third element g such that exactly one of f and g is orthogonal to e and the pairs e, f and e, g have the same orthogonal complement. Linear orthosets naturally arise from anisotropic Hermitian spaces. We moreover define an orthoset to be prelinear by assuming the above-mentioned property for non-orthogonal pairs e, f only. In this paper, we establish some structural properties of prelinear and linear orthosets under the assumption of finiteness or finite rank.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Theoretical Physics
ISSN
0020-7748
e-ISSN
1572-9575
Volume of the periodical
62
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
1-17
UT code for WoS article
001003524700001
EID of the result in the Scopus database
2-s2.0-85161235045